Skip to main content

മഴത്തുള്ളീന്റെ ശാസ്ത്രം

മുസലിയാരുടെ മഴത്തുള്ളി വീഡിയോ വൈറലായപ്പോൾ പലർക്കും സംശയം- അല്ലാ, ശരിയ്ക്കം ഈ മഴത്തുള്ളിയ്ക്ക് എന്ത് സ്പീഡ് വരും?

താഴേയ്ക്ക് വീഴുന്ന വസ്തുവിന്റെ വേഗത എങ്ങനെയാണ് നിർണയിക്കപ്പെടുന്നത്? ഗുരുത്വാകർഷണ ബലമാണ് വസ്തുവിനെ താഴേയ്ക്ക് വലിയ്ക്കുന്നത് എന്നറിയാമല്ലോ. m പിണ്ഡമുള്ള ഒരു വസ്തുവിൽ, F അളവിൽ ബലം പ്രയോഗിക്കപ്പെട്ടാൽ, ന്യൂട്ടന്റെ രണ്ടാം ചലനനിയമത്തിലെ F= ma എന്ന സമവാക്യം അനുസരിച്ച് അതിന് a അളവിൽ ത്വരണം (acceleration) ഉണ്ടാകും. ത്വരണം എന്നാൽ വേഗതയിലുള്ള വർദ്ധനവ് എന്നർത്ഥം. അതായത് താഴേയ്ക്ക് വീഴുന്ന വസ്തുവിന്റെ വേഗത കൂടിക്കൂടിവരും. അതിനെയാണ് ഗുരുത്വ ത്വരണം (acceleration due to gravity) എന്ന് വിളിക്കുന്നത്. ഭൂമിയുടെ ഉപരിതലത്തിൽ ഈ ത്വരണം 9.8 m/s2 ആണ്. എന്നുവെച്ചാൽ ഓരോ സെക്കൻഡിലും 9.8 m/s വേഗത കൂടുന്നു. ഇതുകൊണ്ടാണ് ഒരേ വസ്തു രണ്ട് വ്യത്യസ്ത ഉയരങ്ങളിൽ നിന്ന് തലയിൽ വീണാൽ കൂടുതൽ ഉയരത്തിൽ നിന്ന് വീഴുന്ന വസ്തു കൂടുതൽ വേഗതയിൽ വന്നിടിക്കുന്നത്.

എന്നാൽ താഴേയ്ക്ക് വീഴുന്ന വസ്തുവിൽ പ്രയോഗിയ്ക്കപ്പെടുന്ന ഒരേയൊരു ബലം ഗുരുത്വാകർഷണമല്ല. അവിടെ മറ്റ് രണ്ട് ബലങ്ങൾ കൂടിയുണ്ട്- ഒന്ന് വായുപ്രതിരോധം, പിന്നെ വായു കൊടുക്കുന്ന പ്ലവനബലം. ഈ രണ്ട് ബലങ്ങളും ദ്രവരൂപത്തിലുള്ള (വാതകമോ ദ്രാവകമോ) ഏത് മാധ്യമത്തിലും അനുഭവപ്പെടുന്നത് തന്നെയാണെങ്കിലും, അവ ഓരോ മാധ്യമത്തിലും വ്യത്യസ്ത അളവിലായിരിക്കും. നിങ്ങൾ നീന്താനിറങ്ങിയിട്ടുണ്ടെങ്കിൽ ഈ രണ്ട് ബലങ്ങളും കൃത്യമായി അനുഭവിച്ചറിഞ്ഞിട്ടുണ്ടാകും. കൈകാലുകൾ കരയിൽ എന്നപോലെ വെള്ളത്തിൽ എളുപ്പം ചലിപ്പിക്കാനാവില്ല എന്ന് ശ്രദ്ധിച്ചിട്ടില്ലേ? വെള്ളം നമ്മുടെ ചലനത്തെ പ്രതിരോധിയ്ക്കാൻ ശ്രമിയ്ക്കും. വെള്ളം പ്രയോഗിക്കുന്ന ഈ ബലത്തെ വിസ്കസ് ബലം (viscous force) എന്നാണ് വിളിക്കുന്നത്. ഇതിന് സമാനമാണ് വായുവിന്റെ പ്രതിരോധം. ഓടുന്ന ബസിന്റെ സൈഡ് സീറ്റിൽ ഇരിയ്ക്കുമ്പോൾ അനുഭവപ്പെടുന്ന അതേ ബലം. വെള്ളത്തിൽ നമുക്ക് ഭാരക്കുറവ് അനുഭവപ്പെടാൻ കാരണമാകുന്ന, മുകളിലേയ്ക്കുള്ള ഒരു തള്ളൽബലമാണ് പ്ലവനബലം (buoyant force). വായുവിന്റെ കാര്യത്തിൽ ഇത് വളരെ ദുർബലമാണ് എന്നതിനാൽ, തത്കാലത്തെ സൗകര്യത്തിന് നമുക്കതിനെ മാറ്റിനിർത്താം. 

ഇപ്പോൾ മഴത്തുള്ളിൽ രണ്ട് ബലങ്ങളാണ് പ്രവർത്തിക്കുന്നത്- ഗുരുത്വാകർഷണവും വായുപ്രതിരോധവും. ഇതിൽ ഗുരുത്വാകർഷണം എപ്പോഴും താഴേയ്ക്കും, വായുപ്രതിരോധം എപ്പോഴും ചലനദിശയ്ക്ക് എതിർദിശയിലും (ചലനത്തെ പ്രതിരോധിയ്ക്കുന്ന രീതിയിൽ) ആയിരിക്കും. അതായത്, താഴേയ്ക്ക് വീഴുന്ന മഴത്തുള്ളിയിൽ ഈ രണ്ട് ബലങ്ങളും പരസ്പരം എതിർദിശയിലാണ് പ്രവർത്തിക്കുന്നത്. ഗുരുത്വാകർഷണത്തിന് എപ്പോഴും ഏതാണ്ടൊരേ ശക്തിയാണ്, അത് തുള്ളിയുടെ പിണ്ഡത്തെ മാത്രമേ ആശ്രയിയ്ക്കൂ. പക്ഷേ വായുപ്രതിരോധം അല്പം കൂടി സങ്കീർണമാണ്. അത് തുള്ളിയുടെ വലിപ്പം, രൂപം, ചലനവേഗത, വായുവിന്റെ സാന്ദ്രത എന്നിവയെ ഒക്കെ ആശ്രയിച്ച് മാറും. തത്കാലത്തെ സൗകര്യത്തിന് മഴത്തുള്ളിയുടെ പിണ്ഡവും, രൂപവും*, വായുവിന്റെ സാന്ദ്രതയും മാറുന്നില്ല എന്ന് സങ്കല്പിച്ചാൽ പോലും താഴേയ്ക്ക് വീഴുന്ന തുള്ളിയുടെ വേഗത കൂടുന്നതിനനുസരിച്ച് വായുപ്രതിരോധവും കൂടിക്കൊണ്ടിരിക്കും. ഇങ്ങനെ കൂടിക്കൂടി ഒരു പ്രത്യേകഘട്ടമെത്തുമ്പോൾ അത് ഗുരുത്വാകർഷണ ബലത്തിന് തുല്യശക്തി നേടും. അപ്പോ എന്ത് സംഭവിയ്ക്കും? സ്വാഭാവികമായും തുള്ളിയിൽ പ്രയോഗിക്കപ്പെടുന്ന ആകെബലം പൂജ്യമാകും. ഗുരുത്വാകർഷണവും വായുരോധവും പരസ്പരം ഇല്ലാതാക്കുന്നു. ബലം പൂജ്യമാകുന്നതോടെ ത്വരണം പൂജ്യമാകുന്നു. അതായത്, വെള്ളത്തുള്ളിയുടെ വേഗത പിന്നെ വ‍ർദ്ധിക്കില്ല. അവിടന്നങ്ങോട്ട് അതൊരു സ്ഥിരമായ വേഗതയിലായിരിക്കും താഴേയ്ക്ക് വീഴുന്നത്. അതിനെ വിരാമവേഗം (terminal velocity) എന്ന് വിളിയ്ക്കുന്നു. സ്കൈഡൈവിങ് ചെയ്യുന്നവരൊക്കെ സുഖമായി കുറേ നേരം വായുവിൽ ഭാരരഹിതമായി നീങ്ങുന്നത് ഇങ്ങനെ വിരാമവേഗം കൈവരിയ്ക്കുന്നതുവഴിയാണ്.

പറഞ്ഞുവന്നത്, രണ്ടോ മൂന്നോ കിലോമീറ്റർ മുകളിൽ** നിന്നും പുറപ്പെടുന്ന മഴത്തുള്ളിയുടെ വേഗത, അത് വായുവിലൂടെ അല്പം താഴേയ്ക്ക് നീങ്ങിക്കഴിയുമ്പോൾ തന്നെ വിരാമപ്രവേഗം കൈവരിയ്ക്കും എന്നാണ്. പിന്നീട് അതിന്റെ വേഗത മണ്ണിൽ വന്ന് തട്ടുന്നതുവരേയും മാറില്ല എന്ന് പറയാം. അര സെന്റീമീറ്റർ വലിപ്പമുള്ള ഒരു ശരാശരി മഴത്തുള്ളിയെ സംബന്ധിച്ച് ഈ വേഗത ഏതാണ്ട് 35 kph (മണിക്കൂറിൽ 35 കി.മീ.) ആണ്. തുള്ളിയുടെ വലിപ്പം കൂടുന്നതിനനുസരിച്ച് ഈ വേഗതയും കൂടും. മഴത്തുള്ളിയ്ക്ക് പക്ഷേ ഒരു പരിധിയ്ക്കപ്പുറം വലിപ്പം കൂടില്ല. അതിന് കാരണവും വായുപ്രതിരോധമാണ്. വെള്ളത്തുള്ളിയ്ക്ക് ഗോളാകൃതി പ്രാപിയ്ക്കാൻ കഴിയുന്നത് വെള്ളത്തിന്റെ പ്രതലബലം എന്ന പ്രത്യേകത കാരണമാണ്. മറ്റ് ബലങ്ങൾ അതിനെ മറികടന്നാൽ അതിന് ഗോളാകൃതി പ്രാപിക്കാൻ കഴിയില്ല. ചേമ്പിലയിൽ വെള്ളം ചിതറിയാൽ കുഞ്ഞുതുള്ളികൾ ഗോളാകൃതി പ്രാപിയ്ക്കുകയും വലിയവ പരന്നുപോകുകയും ചെയ്യുന്നത് കണ്ടിട്ടില്ലേ? വലിയ തുള്ളിയുടെ കാര്യത്തിൽ ഗുരുത്വബലം പ്രതലബലത്തെ മറികടക്കുന്നതുകൊണ്ടാണ് അത്. അതുപോലെ വലിയ മഴത്തുള്ളിയിൽ അനുഭവപ്പെടുന്ന വായുരോധവും അത്രകണ്ട് കൂടുതലായിരിക്കും. അത് പ്രതലബലത്തെ മറികടന്നാൽ തുള്ളി പൊട്ടിച്ചിതറിപ്പോകും. അതുകൊണ്ട് സാധാരണഗതിയിൽ ഒരു മഴത്തുള്ളിയ്ക്ക് അഞ്ചോ ആറോ മില്ലിമീറ്ററൊക്കെയേ വലിപ്പമുണ്ടാകൂ.

* മഴത്തുള്ളിയുടെ രൂപം കാർട്ടൂണുകളിൽ വരയ്ക്കുന്നതുപോലെ മുകളിലേയ്ക്ക് കൂമ്പിയ പിയർ പഴം പോലെയുള്ള ഒന്നല്ല. എല്ലാ ചെറിയ ദ്രാവകത്തുള്ളികൾക്കും സ്വാഭാവികമായ ആകൃതി ഗോളാകൃതി ആണ്. മഴത്തുള്ളിയുടെ കാര്യത്തിൽ പക്ഷേ വായു മുകളിലേയ്ക്ക് തള്ളുന്നതുകൊണ്ട് അതിന്റെ ചുവട് പരന്നുപോകും. അതായത്, ഒരു ബർഗർ ബണ്ണിന്റെ രൂപമാകും അതിനുണ്ടാകുക.

** മുസലിയാര് പറയുന്നപോലെ പതിനായിരം കിലോമീറ്റർ ഉയരെയൊന്നുമല്ല മേഘങ്ങൾ. അത്രേം ദൂരെ മേഘം പോയിട്ട് വായു പോലുമില്ല. ഭൂമിയുടെ അന്തരീക്ഷത്തിന്റെ അതിര് 100 കിലോമീറ്റർ ഉയരത്തിലാണ്. അത് തന്നെ സൈദ്ധാന്തികമാണ്. അന്തരീക്ഷവായുവിന്റെ തൊണ്ണൂറ് ശതമാനവും 16 കിലോമീറ്ററിൽ താഴെയുണ്ട്.

Comments

Post a Comment

Popular posts from this blog

ഭൂമിയെ കറക്കിക്കൊണ്ടിരിക്കുന്നതാര്?

വളരെ സാധാരണമായി ഉയരുന്ന ഒരു ചോദ്യമാണിത്. ഇത്രയും നാളായി ഇങ്ങനെ നിർത്താതെ കറങ്ങിക്കൊണ്ടിരിക്കാൻ മാത്രം ഊർജം എവിടന്നാണ് ഭൂമിയ്ക്ക് കിട്ടുന്നത് എന്ന ചിന്തയാണ് പലപ്പോഴും ഈ ചോദ്യത്തിലേയ്ക്ക് നയിക്കുന്നത്.  ഉത്തരം വ്യക്തമാകുന്നതിനായി ഈ ചോദ്യത്തെ ആ രീതിയിൽ വെവ്വേറെ രണ്ട് ചോദ്യങ്ങളായി നമുക്ക് വേർതിരിക്കാം. നിർത്താതെ കറങ്ങാൻ വേണ്ട ഊർജം ഭൂമിയ്ക്ക് കിട്ടുന്നത് എവിടെനിന്ന്? ഭൂമി കറങ്ങുന്നതെന്തുകൊണ്ട്? ഒന്നാമത്തെ ചോദ്യത്തിന്റെ ഉത്തരം വളരെ ലളിതവും ഒമ്പതാം ക്ലാസിലെ ഫിസിക്സ് പുസ്തകത്തിൽ നിന്നും കിട്ടുന്നതുമാണ്. (ബിരുദതലം വരെ ഫിസിക്സ് പഠിച്ചവർ വരെ ഈ ചോദ്യം ചോദിക്കുന്നത് കേട്ടിട്ടുണ്ട് എന്നത് നമ്മൾ പഠിക്കേണ്ടതുപോലെയല്ല അത് പഠിച്ചത് എന്ന് വ്യക്തമാക്കുന്നു). ന്യൂട്ടന്റെ ഒന്നാം ചലനനിയമം ആണിവിടെ കാണേണ്ടത്: “അസന്തുലിതമായ ഒരു ബാഹ്യബലം പ്രവർത്തിക്കാത്തിടത്തോളം ഏതൊരു വസ്തുവും അതിന്റെ നിശ്ചലാവസ്ഥയിലോ നേർരേഖയിലൂടെയുള്ള സമാനചലനത്തിലോ തുടരും” എന്നാണ് ഒന്നാം നിയമം പറയുന്നത്. നിശ്ചലമായിരിക്കുന്ന പമ്പരത്തെ കറക്കിവിടാൻ ബാഹ്യബലം കൂടിയേ തീരു. എന്നാൽ കറക്കിവിടൽ എന്ന പണി കഴിഞ്ഞ് ബാഹ്യബലം പിൻവാങ്ങിയാൽ പിന്നെ ആ ...

കുഞ്ഞുമനസ്സിലേയ്ക്ക് നാം കയറ്റിവിടുന്നത്…

കുട്ടിക്കാലത്തെ എന്റെ ഏറ്റവും വലിയ ആഗ്രഹം, ഭൂമിയുടെ അച്ചുതണ്ടിന്റെ മുകളിൽ കയറിനിന്ന് താഴേയ്ക്ക് നോക്കി ഭൂമി കറങ്ങുന്നത് നേരിട്ട് കാണുക എന്നതായിരുന്നു. ഈ ആഗ്രഹം വളരെ നാൾ കൊണ്ടുനടന്ന ശേഷമാണ് ഭൂമിയുടെ അച്ചുതണ്ട് സാങ്കല്പികം മാത്രമാണെന്ന ഞെട്ടിക്കുന്ന ദുഃഖസത്യം ഞാൻ തിരിച്ചറിഞ്ഞത്. ഭൂമിയെക്കുറിച്ചുള്ള എന്റെ ധാരണകൾ പലതും  കൂടോടെ പറിച്ചുകളയാൻ നിർബന്ധിച്ച ഒരു തിരിച്ചറിവായിരുന്നു അത്. ഇന്നാലോചിക്കുമ്പോൾ, കുറച്ചുകാലം കൂടി ആ തെറ്റിദ്ധാരണ ഞാൻ കൊണ്ടുനടന്നിരുന്നു എങ്കിൽ എന്റെ അടിസ്ഥാന ശാസ്ത്രബോധം മൊത്തം കുളമാകുമായിരുന്നു. എന്റെ കാര്യത്തിൽ സംഭവിച്ചത്, ഭൂമിയുടെ കറക്കത്തെ പറ്റി ആദ്യം പഠിപ്പിച്ച ടീച്ചർ ഒരു ഗ്ലോബ് കറക്കിക്കാണിക്കുകയും, ഭൂമിയുടെ കാര്യത്തിൽ നടുക്കുള്ള അച്ചുതണ്ട് സാങ്കല്പികം മാത്രമാണെന്ന് പറയാൻ വിട്ടുപോകുകയും ചെയ്തു എന്നതാണ്. പക്ഷേ വളരെ ചെറിയ കുട്ടികളോട് സംസാരിക്കുമ്പോൾ ഇത്തരം ചെറിയ പിഴവുകൾ, അവരുടെ അടിസ്ഥാന ശാസ്ത്രബോധത്തിൽ കാര്യമായ ദുഃസ്വാധീനം ചെലുത്തും. പലപ്പോഴും നിസ്സാരമായൊരു ഭാഷാപ്രയോഗം മതി കാര്യങ്ങൾ തകിടം മറിയ്ക്കാൻ. നമ്മൾ ഭൂമിയുടെ ‘അകത്താണ്’ താമസിക്കുന്നത് എന്ന് മനസിലാക്കി വെച്ചിര...

ഇലക്ട്രോൺ മൈക്രോസ്കോപ്പ്: ഇലക്ട്രോണിനെന്താ ഇവിടെ കാര്യം?

ചിത്രത്തിൽ കാണുന്നത് എന്താണെന്നറിയാമോ? ഇതൊരു പൂമ്പൊടിയുടെ ചിത്രമാണ്, പക്ഷേ ഒരല്പം വലുതാക്കി എടുത്തിരിക്കുന്നു എന്നേയുള്ളൂ. കൃത്യമായി പറഞ്ഞാൽ 761 മടങ്ങ് വലുതാക്കി (761x magnification) ഒരു ഇലക്ട്രോൺ മൈക്രോസ്കോപ്പ് ഉപയോഗിച്ച് പകർത്തിയ, ചെമ്പരത്തിയുടെ പൂമ്പൊടിയുടെ (hibiscus pollen) ചിത്രമാണത് ഇത്തരം ഇലക്ട്രോൺ മൈക്രോസ്കോപ്പ് ചിത്രങ്ങൾ ഇത് വായിക്കുന്നവർക്ക് അത്ര അപരിചിതമൊന്നുമാകാൻ വഴിയില്ല. പക്ഷേ ഇവിടെ ചോദ്യം മറ്റൊന്നാണ്. ഫോട്ടോ എടുക്കുന്നിടത്ത്, ഈ ‘ഇലക്ടോണി’ന് എന്ത് കാര്യം? ആറ്റത്തിൽ ന്യൂക്ലിയസ്സിന് ചുറ്റും കറങ്ങുന്നു എന്ന് പറയപ്പെടുന്ന ഇലക്ട്രോണിനെ ഇവിടെ കൊണ്ടുവരുന്നത് എന്തിനാണ്? ഉത്തരം ക്വാണ്ടം മെക്കാനിക്സാണ്!! സൂക്ഷ്മതലത്തിൽ പദാർത്ഥ കണങ്ങൾ തരംഗങ്ങളെപ്പോലെ പെരുമാറും എന്ന് ക്വാണ്ടം ഫിസിക്സ് പറയുന്നു. ഇത് അവിശ്വസനീയമായി തോന്നുന്നവർക്കുള്ള അസ്സല് തെളിവാണ് ഇലക്ട്രോൺ മൈക്രോസ്കോപ്പ് ചിത്രങ്ങൾ. ഇലക്ട്രോണുകളെന്ന സൂക്ഷ്മകണങ്ങളുടെ തരംഗസ്വഭാവം ചൂഷണം ചെയ്താണ് ഈ സാങ്കേതിക വിദ്യ പ്രവർത്തിക്കുന്നത്. സാധാരണ പ്രകാശത്തിന് പകരം ഇലക്ട്രോണുകളെ ഉപയോഗിക്കുമ്പോൾ വളരെയധികം കൂടുതൽ റെസല്യൂഷനിലുള്ള ചിത്രങ്ങ...